A new charge-tagged proline-based organocatalyst for mechanistic studies using electrospray mass spectrometry
نویسندگان
چکیده
A new 4-hydroxy-L-proline derivative with a charged 1-ethylpyridinium-4-phenoxy substituent has been synthesized with the aim of facilitating mechanistic studies of proline-catalyzed reactions by ESI mass spectrometry. The charged residue ensures a strongly enhanced ESI response compared to neutral unmodified proline. The connection by a rigid linker fixes the position of the charge tag far away from the catalytic center in order to avoid unwanted interactions. The use of a charged catalyst leads to significantly enhanced ESI signal abundances for every catalyst-derived species which are the ones of highest interest present in a reacting solution. The new charged proline catalyst has been tested in the direct asymmetric inverse aldol reaction between aldehydes and diethyl ketomalonate. Two intermediates in accordance with the List-Houk mechanism for enamine catalysis have been detected and characterized by gas-phase fragmentation. In addition, their temporal evolution has been followed using a microreactor continuous-flow technique.
منابع مشابه
Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS).
The mechanism of the Ugi four-component reaction has been investigated by electrospray ionization (tandem) mass spectrometry using charge-tagged reagents (a carboxylic acid or an amine) to favour detection. Key intermediates were transferred directly via ESI(+) from the reaction solution to the gas phase and characterized by MS measurements and MS/MS collision induced dissociation. The Mumm rea...
متن کاملCharge-tagged ligands: useful tools for immobilising complexes and detecting reaction species during catalysis
In recent years, charge-tagged ligands (CTLs) have become valuable tools in organometallic catalysis. Insertion of an ionic side chain into the molecular skeleton of a known ligand has become a useful protocol for anchoring ligands, and consequently catalysts, in polar and ionic liquid phases. In addition, the insertion of a cationic moiety into a ligand is a powerful tool that can be used to d...
متن کاملElectrospray ionization mass spectrometry of highly heterogeneous protein systems: protein ion charge state assignment via incomplete charge reduction.
Correct mass and charge assignment for large highly heterogeneous macromolecular ions (e.g., large glycoproteins with significant carbohydrate content) presents a great challenge in native electrospray ionization mass spectrometry (ESI MS). A new approach to this problem combines complexity reduction (mass-selection of a narrow distribution of ionic species from a heterogeneous mixture) and gas...
متن کاملStructural effects on the formation of proton and alkali metal ion adducts of apolar, neutral peptides: electrospray ionization mass spectrometry and Ab initio theoretical studies.
Apolar, neutral peptides have been shown to ionize extremely well under the conditions used for electrospray ionization mass spectrometry (ESIMS). Peptides for which the conformations have been independently determined in solution and in crystals have been examined by ESIMS. Studies of peptide helices ranging from 7 to 18 residues reveal that shorter helices yield exclusively singly charged ion...
متن کاملA Rapid, Simple, Liquid Chromatographic-Electrospray Ionization, Ion Trap Mass Spectrometry Method for the Determination of Finasteride in Human Plasma and its Application to Pharmacokinetic Study
A fast, accurate, sensitive, selective and reliable method using reversed-phase high performance liquid chromatography coupled to electrospray ionization ion trap mass spectrometry was developed and validated for the determination of finasteride in human plasma. After protein precipitation with perchloric acid, satisfactory separation was achieved on a Zorbax Eclipse® C8 analytical column u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014